“BX442” –The First Spiral Galaxy in the Universe?

It seems that, so far, it is: In July of 2012, astronomers observed a spiral galaxy in the early universe, billions of years before many other spiral galaxies formed while using the Hubble Space Telescope. They were taking pictures of about 300 very distant galaxies in the early universe to study their properties. This distant spiral galaxy they discovered  existed roughly three billion years after the Big Bang, and light from this part of the universe has been traveling to Earth for about 10.7 billion years.

“As you go back in time to the early universe, galaxies look really strange, clumpy and irregular, not symmetric,” said Alice Shapley, a UCLA associate professor of physics and astronomy, and co-author of the study. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?”

“BX442 looks like a nearby galaxy, but in the early universe, galaxies were colliding together much more frequently,” she said. “Gas was raining in from the intergalactic medium and feeding stars that were being formed at a much more rapid rate than they are today; black holes grew at a much more rapid rate as well. The universe today is boring compared to this early time.”

Galaxies in today’s universe divide into various types, including spiral galaxies like our own Milky Way, which are rotating disks of stars and gas in which new stars form, and elliptical galaxies, which include older, redder stars moving in random directions. The mix of galaxy structures in the early universe is quite different, with a much greater diversity and larger fraction of irregular galaxies, Shapley said.

“The fact that this galaxy exists is astounding,” said David Law, lead author of the study and Dunlap Institute postdoctoral fellow at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics. “Current wisdom holds that such ‘grand-design’ spiral galaxies simply didn’t exist at such an early time in the history of the universe.” A ‘grand design’ galaxy has prominent, well-formed spiral arms.

The galaxy, which goes by the not very glamorous name of BX442, is quite large compared with other galaxies from this early time in the universe; only about 30 of the galaxies that Law and Shapley analyzed are as massive as this galaxy.

To gain deeper insight into their unique image of BX442, Law and Shapley went to the W.M. Keck Observatory atop Hawaii’s dormant Mauna Kea volcano and used a unique state-of-the-science instrument called the OSIRIS spectrograph, which was built by James Larkin, a UCLA professor of physics and astronomy. They studied spectra from some 3,600 locations in and around BX442, which provided valuable information that enabled them to determine that it actually is a rotating spiral galaxy — and not, for example, two galaxies that happened to line up in the image.

“We first thought this could just be an illusion, and that perhaps we were being led astray by the picture,” Shapley said. “What we found when we took the spectral image of this galaxy is that the spiral arms do belong to this galaxy. It wasn’t an illusion. We were blown away.” Law and Shapley also see some evidence of an enormous black hole at the center of the galaxy, which may play a role in the evolution of BX442.

Why does BX442 look like galaxies that are so common today but were so rare back then?

Law and Shapley say the answer may have to do with a companion dwarf galaxy, which the OSIRIS spectrograph reveals as a blob in the upper left portion of the image, and the gravitational interaction between them. Support for this idea is provided by a numerical simulation conducted by Charlotte Christensen, a postdoctoral scholar at the University of Arizona and a co-author of the research in Nature. Eventually the small galaxy is likely to merge into BX442, Shapley said.

Law, a former Hubble postdoctoral fellow at UCLA, and Shapley will continue to study BX442.

“We want to take pictures of this galaxy at other wavelengths,” Shapley said. “That will tell us what type of stars are in every location in the galaxy. We want to map the mixture of stars and gas in BX442.”

Shapley said that BX442 represents a link between early galaxies that are much more turbulent and the rotating spiral galaxies that we see around us. “Indeed, this galaxy may highlight the importance of merger interactions at any cosmic epoch in creating grand design spiral structure,” she said.

Studying BX442 is likely to help astronomers understand how spiral galaxies like the Milky Way form, Shapley concluded.

The image at the top of the page ian an artist’s conception of the farthest spiral galaxy ever seen; in a Hubble/Keck image (inset), the blob at upper left is a companion galaxy whose gravity may have sparked the spiral structure. Credit: (left) David Law; (right) Joe Bergeron, Dunlap Institute for Astronomy and Astrophysics

The Daily Galaxy via UCLA News and Nature.com

via “BX442” –The First Spiral Galaxy in the Universe?.

So long Herschel, but thanks for all the fish.

ESA’s Herschel space observatory has exhausted its supply of liquid helium coolant, ending more than three years of pioneering observations of the cool Universe.

The event was not unexpected: the mission began with over 2300 litres of liquid helium, which has been slowly evaporating since the final top-up the day before Herschel’s launch on 14 May 2009.

The liquid helium was essential to cool the observatory’s instruments to close to absolute zero, allowing Herschel to make highly sensitive observations of the cold Universe until today.

via Herschel closes its eyes on the Universe.

The Importance of Science Fiction for Science Fact


Over the last few years, it has become overwhelmingly obvious to me, that the majority of the Scientific community, has become somewhat “jaded” towards any suggestion that is not 100% scientifically provable TODAY. By no means does this cover all science folk, but It worries me that a number of ‘eminently public’ scientists shun and mock any speculative suggestion made as rubbish.

Now, before we continue, let me just assert. As a budding member of the scientific world, I am fully aware of the need for any scientific theory to have results to back it up. BUT, lets just be a little realistic here. Without “speculation” there would be very few of the scientific discoveries that we have today.

As I stated before, we cannot tar the entire community with the same brush. For instance, the greatly eminent physicists Michio Kaku (one of the great heavy weights in physics today) along with Stephen Hawking (possibly THE heavy weight) are both prolific dreamers. Michio has written a whole library of books, where the “Physics of Tomorrow” are considered. From tri-corders to time travel. Without this sci-fi, head in the clouds approach to physics, the field would be a deadly boring world of mundane calculations and repetitive observation.

Stephen Hawking recorded a whole series based on physics principals that he dreams about, to the extent where he supposedly set up a dinner party for time travellers. Sending out invitations so that they might, in distant time be found by time travellers. Who would appear, at that the set time and date for this temporal gathering with canapés.

One of my most loved topics of thought, dream and conversation is time travel. Something that is greatly studied at this point in time. There are a great number of theories, papers and books all on this fascinating topic. The possibilities are endless. From time dilation at the event horizon of a black hole, to the microscopic wormholes of the quantum foam at Plank scales.1 Conversation of paradox and loopholes (the most famous of the time travel paradox is the grandfather paradox which postulates that, you travel back in time to kill your own grandfather, so that you were never born. However, that very action means that you do not exist too travel back to make the kill…..and therefore time is stuck in what becomes known as a causal loop) I have spent hours of my life, trying to unpick causal loops and paradox to see what effect specific actions would have on the overall temporal outcome. Needless to say, its normally the same outcome.

That was somewhat of a wormhole digression, so back to the original geodesic.

From the very earliest days of the science fiction genre, those of Jules Verne and his 1865 novel From the Earth to the Moon humanity has dreamt of things that were (at that point) technologically impossible. THIS WILL NOT ALWAYS BE THE CASE, as Joules proved (well, you know what I mean). He was a man far before his time. Yet, over a century on, people HAVE walked on the moon, and we are well on the way to walking on Mars. The Star Trek franchise is yet another science fiction series, from which we are now taking inspiration. Walk into the medical bay on the Enterprise and you would be sure to spot a tri-corder. Well, now there is such a device, being trialed in the US. Warp Drive is yet another of the Trek Tech which is taking on a physical presence in today’s physics research. (For more on this see the Wiki for Alcubierre Drive )

Scientists in the public eye, especially, need to actually get the younger generations to dream, to speculate. For only then, will the scientific field progress and grow.

  1. I note here that the use of wormholes doesn’t technically relate to “time travel” in the same sense of the time dilation of black hole theory. However, the use of the highly speculative wormhole would effectively cut journey times from one side of the universe to the other. So it’s more of a time saving, than a time travel.