Astronomy Photo of the Day — MS0735.6+7421

Meet MS0735.6+7421: a galaxy cluster located at a distance of 2.6 billion light-years from Earth, in the constellation of Camelopardalis. Like all clusters, MS0735.6+7421 (we’ll call it MS0735 for short) is a loose collection of galaxies that are held together by the force of gravity.

via Astronomy Photo of the Day — MS0735.6+7421.

Video: How do black holes evaporate?

Nothing lasts forever, not even black holes. According to Stephen Hawking, black holes will evaporate over vast periods of time. But how, exactly, does this happen?

The actor Stephen Hawking is best known for his cameo appearances in Futurama and Star Trek, you might surprised to learn that he’s also a theoretical astrophysicist. Is there anything that guy can’t do?

One of the most fascinating theories he came up with is that black holes, the universe’s swiffer, can actually evaporate over vast periods of time.

Quantum theory suggests there are virtual particles popping in and out of existence all the time. When this happens, a particle and its antiparticle appear, and then they recombine and disappear again.

When this takes place near an event horizon, strange things can happen. Instead of the two particles existing for a moment and then annihilating each other, one particle can fall into the black hole, and the other particle can fly off into space. Over vast periods of time, the theory says that this trickle of escaping particles causes the black hole to evaporate.

via Video: How do black holes evaporate?.

Giant Galaxies Die from the Inside Out | ESO

Astronomers have shown for the first time how star formation in “dead” galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts. The results will be published in the 17 April 2015 issue of the journal Science.

via Giant Galaxies Die from the Inside Out | ESO.

Laniakea: Newly identified galactic supercluster is home to the Milky Way

Astronomers using the National Science Foundation’s Green Bank Telescope GBT—among other telescopes—have determined that our own Milky Way galaxy is part of a newly identified ginormous supercluster of galaxies, which they have dubbed “Laniakea,” which means “immense heaven” in Hawaiian.

via Laniakea: Newly identified galactic supercluster is home to the Milky Way.

Did Astronomers Find the Oldest Spiral Galaxy in the Cosmos?

In July of 2012, astronomers observed a spiral galaxy in the early universe, billions of years before many other spiral galaxies formed while using the Hubble Space Telescope. They were taking pictures of about 300 very distant galaxies in the early universe to study their properties. This distant object existed roughly three billion years after the Big Bang, and light from this part of the universe has been traveling to Earth for about 10.7 billion years.

“The fact that this galaxy exists is astounding,” said David Law, lead author of the study a fellow at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics. “Current wisdom holds that such ‘grand-design’ spiral galaxies simply didn’t exist at such an early time in the history of the universe.” A ‘grand design’ galaxy has prominent, well-formed spiral arms.

“As you go back in time to the early universe, galaxies look really strange, clumpy and irregular, not symmetric,” said Alice Shapley, a UCLA associate professor of physics and astronomy, and co-author of the study. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?”

via Did Astronomers Find the Oldest Spiral Galaxy in the Cosmos?.

Powerful Black-Hole ‘Microquasar’ Found

“By studying microquasars such as MQ1, we get a glimpse of how the early universe evolved, how fast quasars grew and how much energy black holes provided to their environment.”As a comparison, the most powerful microquasar in our galaxy, known as SS433, is about 10 times less powerful than MQ1.” A team of Australian and American astronomers have been studying nearby galaxy M83 and have found this new superpowered small black hole, MQ1, the first object of its kind to be studied in this much detail.

Astronomers have found a few compact objects that are as powerful as MQ1, but have not been able to work out the size of the black hole contained within them until now. The team observed the MQ1 system with multiple telescopes and discovered that it is a standard-sized small black hole, rather than a slightly bigger version that was theorised to account for all its power.

Curtin University senior research fellow Dr Roberto Soria, who is part of the International Centre for Radio Astronomy Research (ICRAR) and led the team investigating MQ1, said it was important to understand how stars were formed, how they evolved and how they died, within a spiral shaped galaxy like M83.

via Powerful Black-Hole ‘Microquasar’ Found.

Alien Planet Kepler 78b –A Mystery World that Baffles Astronomers

Alien Planet Kepler-78b \”is a complete mystery,\” says astronomer David Latham of the Harvard-Smithsonian Center for Astrophysics CfA. \”We dont know how it formed or how it got to where it is today. What we do know is that its not going to last forever.\”Kepler-78b is a planet that shouldnt exist. This scorching lava world circles its star every eight and a half hours at a distance of less than one million miles – one of the tightest known orbits. According to current theories of planet formation, it couldnt have formed so close to its star, nor could it have moved there.\”Kepler-78b is going to end up in the star very soon, astronomically speaking,\” agrees CfA astronomer Dimitar Sasselov. \”It couldnt have formed in place because you cant form a planet inside a star. It couldnt have formed further out and migrated inward, because it would have migrated all the way into the star. This planet is an enigma,\” explains Sasselov.Not only is Kepler-78b a mystery world, it is the first known Earth-sized planet with an Earth-like density. Kepler-78b is about 20 percent larger than the Earth, with a diameter of 9,200 miles, and weighs almost twice as much. As a result it has a density similar to Earths, which suggests an Earth-like composition of iron and rock. The tight orbit of Kepler-78b poses a challenge to theorists. When this planetary system was forming, the young star was larger than it is now. As a result, the current orbit of Kepler-78b would have been inside the swollen star.

via Alien Planet Kepler 78b –A Mystery World that Baffles Astronomers.

“Our Star-Trek Future” –NASA Scientists Engineering a Warp-Drive Solution for Faster-Than-Light Space Travel (Weekend Feature)

Move over Star Trek! According to state-of-the art theory, a warp drive could cut the travel time between stars from tens of thousands of years to weeks or months. Harold G. White, a physicist and advanced propulsion engineer at NASA and other NASA engineers are trying to determine whether faster-than-light travel — warp drive — might someday be possible. The team has attempting to slightly warp the trajectory of a photon, changing the distance it travels in a certain area, and then observing the change with a device called an interferometer.

“Space has been expanding since the Big Bang 13.7 billion years ago,” said Dr. White, 43, who runs the research project told the New York Times. “And we know that when you look at some of the cosmology models, there were early periods of the universe where there was explosive inflation, where two points would’ve went receding away from each other at very rapid speeds. Nature can do it,” he added. “So the question is, can we do it?”

via “Our Star-Trek Future” –NASA Scientists Engineering a Warp-Drive Solution for Faster-Than-Light Space Travel (Weekend Feature).